Stand: WiSe 2025
| Name | Research Study: Challenges in Digital Technology Management | |
| Katalog-Nummer | FK 10#PPM#M4.13 | |
| Zugehörigkeit zu Curriculum | 
                    Master Betriebswirtschaft | M4.13 | 5 Leistungspunkte
                 | |
| Modulverantwortung | 
                    Prof. Dr. Eva Anderl
                 | |
| Lehrende | 
                    Prof. Dr. Eva Anderl
                 
                    Marcel Hülsbeck
                 | |
| Prüfung(en) | Prüfungsform: ModA 80 % und Präs 20 %. Detailangaben: will be provided in class Hildsmittel: none 
                            Prüfende:
                                Prof. Dr. Eva Anderl
                                                            , Marcel Hülsbeck
                         | |
| Lehr- und Lernform(en) | 
                         | 4 SWS | S - 1 Angebot(e)
                     | |
| Arbeitsaufwand | Präsenzzeit: 0 Stunden Selbststudium, Vor- und Nachbereitung, Prüfungsvorbereitung: 0 Stunden | |
| 
                Voraussetzungen
             |  | |
| 
                Verwendbarkeit
             |  | |
| Inhalt / Lernziele |  | |
| Name | Research Study: Challenges in Digital Technology Management | |
| Katalog-Nummer | FK 10#PPM#M4.13 | |
| Zugehörigkeit zu Curriculum | 
                        Master Betriebswirtschaft | M4.13 | 5 Leistungspunkte
                     | |
| Modulverantwortung | 
                        Prof. Dr. Eva Anderl
                     | |
| Lehrende | 
                        Prof. Dr. Eva Anderl
                     
                        Marcel Hülsbeck
                     | |
| Prüfung(en) | Prüfungsform: ModA 80 % und Präs 20 %. Detailangaben: will be provided in class Hildsmittel: none 
                                Prüfende:
                                    Prof. Dr. Eva Anderl
                                                                    , Marcel Hülsbeck
                             | |
| Lehr- und Lernform(en) | 
                             | 4 SWS | S - 1 Angebot(e)
                         | |
| Arbeitsaufwand | Präsenzzeit: 0 Stunden Selbststudium, Vor- und Nachbereitung, Prüfungsvorbereitung: 0 Stunden | |
| 
                    Voraussetzungen
                 |  | |
| 
                    Verwendbarkeit
                 |  | |
| Inhalt / Lernziele | Intended Learning OutcomesThe students are enabled to  
 ContentsArtificial Intelligence (AI) is a powerful catalyst for business model innovation (BMI), reshaping how firms create, deliver, and capture value. AI technologies enable new forms of value generation and strategic differentiation, but also demand organizational adaptation and ecosystem collaboration. Firms must balance the development of internal AI capabilities with the external dynamics of BMI, such as ecosystem integration and co-evolution with partners and markets. In this research study seminar, students will investigate how AI drives and transforms BMI, exploring the key enablers, challenges, and success factors of AI-driven business model innovation across industries. Applied Methods in Economics and Business AdministrationModels and methods of analysis (research and analysis methods)
 Quantitative empirical methods (comparative- statistical, mathematical methods, data analysis)
 Qualitative interpretative methods (expert interviews, polls, standardised surveys)
 Teaching and learning methods
 LiteratureHeider, A. K., Clauss, T., Hülsbeck, M., Gerken, M., & Rüsen, T. A. (2022). Blood Is Thicker Than Water: The Role Of Family Willingness And Family Ability In Achieving Holistic Digitalisation In Family Businesses. International Journal of Innovation Management, 26(03), 2240009. Heider, A., Hülsbeck, M., & von Schlenk-Barnsdorf, L. (2022). The role of family firm specific resources in innovation: An integrative literature review and framework. Management Review Quarterly, 72(2), 483-530. Heider, A., Gerken, M., van Dinther, N., & Hülsbeck, M. (2021). Business model innovation through dynamic capabilities in small and medium enterprises–Evidence from the German Mittelstand. Journal of Business Research, 130, 635-645. Weimann, V., Gerken, M., & Hülsbeck, M. (2020). Business model innovation in family firms: dynamic capabilities and the moderating role of socioemotional wealth. Journal of Business Economics, 90, 369-399. Introduction to and identification of further literature as part of the course | |